Call 866-536-3518 or chat with us online for more information. 

Hydrogen-Rich Water: A Potential Tool to Fight Against Alzheimer’s Disease.

Hydrogen-Rich Water: A Potential Tool to Fight Against Alzheimer’s Disease.

Progressive neurodegenerative disorders such as Alzheimer’s disease (AD), has become more prevalent in the aging population. The disease leaves those affected with loss of cognitive function and memory decline. At this time there is no cure, so researchers and caregivers have been looking for treatments. Hydrogen-rich water (HRW) has been recently show to be a possible promising therapy.

In this article, the potential benefits of hydrogen-rich alkaline water for Alzheimer’s disease and dementia will be discussed along with the scientific evidence from both animal studies and human trials.

The Potential of Alkaline, Hydrogen-Rich Water: The Science 

hydrogen-rich, alkaline water for brain health

The molecular hydrogen (H₂) in hydrogen-rich water acts as a selective antioxidant so it neutralizes harmful free radicals without affecting healthy cells in the body. Free radicals are unstable molecules with unpaired electrons. This excessive production that is produced can damage cellular components, which is a contributing to wide range of diseases, including Alzheimer’s and dementia.

When ingested, the tiny hydrogen molecules in alkaline, hydrogen water HRW can reach the brain and exert their antioxidant effects, potentially mitigating the damage caused by free radicals in Alzheimer’s patients.

Below are some of the scientific studies that provide evidence supporting the benefits :

  • Animal Studies: Encouraging results have shown the benefits of alkaline, hydrogen water on animal models. Mice who consumed alkaline, hydrogen water  improve cognitive function, protect brain cells from damage and death, and even reduce the formation of amyloid plaques and tau tangles, the protein clumps characteristic of Alzheimer’s brains [1]. Hydrogen, alkaline water also reduces inflammation in the brain, another factor seen in the progression of Alzheimer’s [2].
  • Human Trials: Improved cognitive function is seen in individuals with MCI who carry the apolipoprotein E (APOE4) gene, a known risk factor for for Alzheimer’s [5]. This study observed improved cognitive function in individuals with MCI who carry the apolipoprotein E (APOE4) gene, a known risk factor for AD [5].

With these studies and more, hydrogen-rich alkaline water has been shown to have neuroprotective effects, particularly for individuals with a genetic predisposition for Alzheimer’s. 

What’s Next? Research and Responsible Exploration.

Recent research on hydrogen, alkaline water for Alzheimer’s disease is growing, and developments in the near future:

  • More Clinical Trials: Professional, well-designed, wide-reaching clinical trials are planned to continue research into the efficacy of hydrogen, alkaline water in combating Alzheimer’s disease progression and improve cognitive function in patients.
  • Individualized Treatment Plans: Personalized approaches to tailor based on factors like genetics and disease severity.
  • Individual Combination Therapy Plans: Using a combination of hydrogen-rich, alkaline water along  with existing Alzheimer’s disease medications could be offer a more comprehensive therapy to combat the disease.
  • Education: Educating the public about the potential benefits of hydrogen, alkaline water against Alzheimer’s disease is essential. The treatment and cure to this complex disease will not be easy but progress is being seen.

It is important to consult with a healthcare professional before considering HRW as a potential complementary therapy for Alzheimer’s disease.

The potential of HRW for mitigating the effects of Alzheimer’s disease offers a beacon of hope in the ongoing fight against this devastating condition. Early research is promising, and ongoing clinical trials and exploration hold immense potential for developing HRW as a valuable tool in managing Alzheimer’s disease. https://journals.lww.com/nrronline/fulltext/2022/02000/hydrogen_rich_water_ameliorates_neuropathological.38.aspx  

1. Albaret G, Sifré E, Floch P, Laye S, Aubert A, Dubus P, Azzi-Martin L, Giese A, Salles N, Mégraud F, Varon C, Lehours P, Roubaud-Baudron C. Alzheimer’s disease and helicobacter pylori infection: inflammation from stomach to brain? J Alzheimers Dis. 2020;73:801–809

2. Allsop D, Wong CW, Ikeda S, Landon M, Kidd M, Glenner GG. Immunohistochemical evidence for the derivation of a peptide ligand from the amyloid beta-protein precursor of Alzheimer disease Proc Natl Acad Sci U S A. 1988;85:2790–2794

3. Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration FEBS Lett. 2018;592:692–702

4. Batista AF, Forny-Germano L, Clarke JR, Lyra ESNM, Brito-Moreira J, Boehnke SE, Winterborn A, Coe BC, Lablans A, Vital JF, Marques SA, Martinez AM, Gralle M, Holscher C, Klein WL, Houzel JC, Ferreira ST, Munoz DP, De Felice FG. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease J Pathol. 2018;245:85–100

5. Biczo G, Vegh ET, Shalbueva N, Mareninova OA, Elperin J, Lotshaw E, Gretler S, Lugea A, Malla SR, Dawson D, Ruchala P, Whitelegge J, French SW, Wen L, Husain SZ, Gorelick FS, Hegyi P, Rakonczay Z Jr, Gukovsky I, Gukovskaya AS. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models Gastroenterology. 2018;154:689–703

6. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM. Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice Neuron. 2005;45:675–688

7. Bozso Z, Penke B, Simon D, Laczkó I, Juhász G, Szegedi V, Kasza A, Soós K, Hetényi A, Wéber E, Tóháti H, Csete M, Zarándi M, Fülöp L. Controlled in situ preparation of A beta(1-42) oligomers from the isopeptide “iso-A beta(1-42)”, physicochemical and biological characterization Peptides. 2010;31:248–256

8. Cheng D, Chang H, Ma S, Guo J, She G, Zhang F, Li L, Li X, Lu Y. Tiansi liquid modulates gut microbiota composition and tryptophan-kynurenine metabolism in rats with hydrocortisone-induced depression Molecules. 2018;23:2832

9. Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease Nat Rev Neurol. 2018;14:399–415

10. Corpas FJ, González-Gordo S, Cañas A, Palma JM. Nitric oxide and hydrogen sulfide in plants: which comes first? J Exp Bot. 2019;70:4391–4404

11. Daniels MJ, Rivers-Auty J, Schilling T, Spencer NG, Watremez W, Fasolino V, Booth SJ, White CS, Baldwin AG, Freeman S, Wong R, Latta C, Yu S, Jackson J, Fischer N, Koziel V, Pillot T, Bagnall J, Allan SM, Paszek P, et al Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models Nat Commun. 2016;7:12504

12. Deas E, Cremades N, Angelova PR, Ludtmann MH, Yao Z, Chen S, Horrocks MH, Banushi B, Little D, Devine MJ, Gissen P, Klenerman D, Dobson CM, Wood NW, Gandhi S, Abramov AY. Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease Antioxid Redox Signal. 2016;24:376–391

13. Du YH, Sun Y, Yang RY, Wang LY, Cai M. Mechanisms of neuroinflammation in mild cognitive impairment Zhongguo Zuzhi Gongcheng Yanjiu. 2021;25:4743–4749

14. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktäschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease Nat Neurosci. 2019;22:401–412

15. Filippov MA, Tatarnikova OG, Pozdnyakova NV, Vorobyov VV. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: a role of mitochondria targeted catalase and xanthophylls Neural Regen Res. 2021;16:223–233

16. Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM. Synaptic impairment in Alzheimer’s disease: a dysregulated symphony Trends Neurosci. 2017;40:347–357

17. Frere S, Slutsky I. Alzheimer’s disease: from firing instability to homeostasis network collapse Neuron. 2018;97:32–58

18. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, et al Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients Science. 2018;359:97–103

19. Gray SC, Kinghorn KJ, Woodling NS. Shifting equilibriums in Alzheimer’s disease: the complex roles of microglia in neuroinflammation, neuronal survival and neurogenesis Neural Regen Res. 2020;15:1208–1219

20. Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease Acta Neuropathol. 2017;133:665–704

21. Hammer C, Stepniak B, Schneider A, Papiol S, Tantra M, Begemann M, Sirén AL, Pardo LA, Sperling S, Mohd Jofrry S, Gurvich A, Jensen N, Ostmeier K, Lühder F, Probst C, Martens H, Gillis M, Saher G, Assogna F, Spalletta G, et al Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity Mol Psychiatry. 2014;19:1143–1149

22. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, et al Neuroinflammation in Alzheimer’s disease Lancet Neurol. 2015;14:388–405

23. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B. Complement and microglia mediate early synapse loss in Alzheimer mouse models Science. 2016;352:712–716

24. Iida A, Nosaka N, Yumoto T, Knaup E, Naito H, Nishiyama C, Yamakawa Y, Tsukahara K, Terado M, Sato K, Ugawa T, Nakao A. The Clinical application of hydrogen as a medical treatment Acta Med Okayama. 2016;70:331–337

25. Iketani M, Ohsawa I. Molecular hydrogen as a neuroprotective agent Curr Neuropharmacol. 2017;15:324–331

26. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease Alzheimers Dement. 2018;14:535–562

27. Jha MK, Lee WH, Suk K. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders Biochem Pharmacol. 2016;103:1–16

28. Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T. Microglia: housekeeper of the central nervous system Cell Mol Neurobiol. 2018;38:53–71

29. Kempuraj D, Ahmed ME, Selvakumar GP, Thangavel R, Dhaliwal AS, Dubova I, Mentor S, Premkumar K, Saeed D, Zahoor H, Raikwar SP, Zaheer S, Iyer SS, Zaheer A. Brain injury-mediated neuroinflammatory response and Alzheimer’s disease Neuroscientist. 2020;26:134–155

30. Kocha KM, Reilly K, Porplycia DS, McDonald J, Snider T, Moyes CD. Evolution of the oxygen sensitivity of cytochrome c oxidase subunit 4 Am J Physiol Regul Integr Comp Physiol. 2015;308:R305–320

31. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10 Proc Natl Acad Sci U S A. 2001;98:5815–5820

32. Kumar A, Barrett JP, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury Brain Behav Immun. 2016;58:291–309

33. Kumar M, Sandhir R. Hydrogen sulfide in physiological and pathological mechanisms in brain CNS Neurol Disord Drug Targets. 2018;17:654–670

34. Kura B, Bagchi AK, Singal PK, Barancik M, LeBaron TW, Valachova K, Šoltés L, Slezák J. Molecular hydrogen: potential in mitigating oxidative-stress-induced radiation injury (1) Can J Physiol Pharmacol. 2019;97:287–292

35. Li R, Xin T, Li D, Wang C, Zhu H, Zhou H. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy Redox Biol. 2018;18:229–243

36. Lowe VJ, Wiste HJ, Senjem ML, Weigand SD, Therneau TM, Boeve BF, Josephs KA, Fang P, Pandey MK, Murray ME, Kantarci K, Jones DT, Vemuri P, Graff-Radford J, Schwarz CG, Machulda MM, Mielke MM, Roberts RO, Knopman DS, Petersen RC, et al Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia Brain. 2018;141:271–287

37. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities Appl Environ Microbiol. 2005;71:8228–8235

38. MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, Louie G, Kueider-Paisley A, Moseley MA, Thompson JW, St John Williams L, Tenenbaum JD, Blach C, Baillie R, Han X, Bhattacharyya S, Toledo JB, Schafferer S, Klein S, Koal T, et al Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for gut microbiome Alzheimers Dement. 2019;15:76–92

39. Manuel CR, Latuga MS, Ashby CR Jr, Reznik SE. Immune tolerance attenuates gut dysbiosis, dysregulated uterine gene expression and high-fat diet potentiated preterm birth in mice Am J Obstet Gynecol. 2019:596.e1–596.e28

40. Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease Free Radic Biol Med. 1997;23:134–147

41. Mostafavi S, Gaiteri C, Sullivan SE, White CC, Tasaki S, Xu J, Taga M, Klein HU, Patrick E, Komashko V, McCabe C, Smith R, Bradshaw EM, Root DE, Regev A, Yu L, Chibnik LB, Schneider JA, Young-Pearse TL, Bennett DA, et al A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease Nat Neurosci. 2018;21:811–819

42. Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy Cardiovasc Res. 2017;113:389–398

43. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease Neurobiol Aging. 2003;24:1063–1070

44. Ohno K, Ito M, Ichihara M, Ito M. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases Oxid Med Cell Longev. 2012;2012:353152

45. Ohta S. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications Methods Enzymol. 2015;555:289–317

46. Olas B. Hydrogen sulfide as a “double-faced” compound: one with pro- and antioxidant effect Adv Clin Chem. 2017;78:187–196

47. Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease Clin Biochem. 2019;72:87–89

48. Park J, Wetzel I, Marriott I, Dréau D, D’Avanzo C, Kim DY, Tanzi RE, Cho H. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease Nat Neurosci. 2018;21:941–951

49. Paxinos G, Franklin KB The Mouse Brain in Stereotaxic Coordinates. 2013 San Diego Elsevier

50. Rai S, Kamat PK, Nath C, Shukla R. Glial activation and post-synaptic neurotoxicity: the key events in streptozotocin (ICV) induced memory impairment in rats Pharmacol Biochem Behav. 2014;117:104–117

51. Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, Creemers E, Vertkin I, Nys J, Ranaivoson FM, Comoletti D, Savas JN, Remaut H, Balschun D, Wierda KD, Slutsky I, Farrow K, De Strooper B, de Wit J. Secreted amyloid-β precursor protein functions as a GABA(B)R1a ligand to modulate synaptic transmission Science. 2019;363:eaao4827

52. Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, Palop JJ, Noebels JL, Mucke L. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease J Neurosci. 2011;31:700–711

53. Sehajpal S, Prasad DN, Singh RK. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): a long march towards synthesis of safer NSAIDs Mini Rev Med Chem. 2018;18:1199–1219

54. Selkoe DJ, Schenk D. Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics Annu Rev Pharmacol Toxicol. 2003;43:545–584

55. Sheng ZH, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration Nat Rev Neurosci. 2012;13:77–93

56. Shoji H, Takao K, Hattori S, Miyakawa T. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age Mol Brain. 2016;9:11

57. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid Anal Biochem. 1985;150:76–85

58. Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases Acta Neuropathol. 2017;134:187–205

59. Su CH, McStay GP, Tzagoloff A. Assembly of the rotor component of yeast mitochondrial ATP synthase is enhanced when Atp9p is supplied by Atp9p-Cox6p complexes J Biol Chem. 2014;289:31605–31616

60. Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus Nat Rev Gastroenterol Hepatol. 2017;14:32–42

61. Tran TTT, Corsini S, Kellingray L, Hegarty C, Le Gall G, Narbad A, Müller M, Tejera N, O’Toole PW, Minihane AM, Vauzour D. APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer’s disease pathophysiology FASEB J. 2019;33:8221–8231

62. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, Van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J. The neuroactive potential of the human gut microbiota in quality of life and depression Nature microbiology. 2019;4:623–632

63. Vilalta A, Brown GC. Neurophagy, the phagocytosis of live neurons and synapses by glia, contributes to brain development and disease FEBS J. 2018;285:3566–3575

64. Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions Nat Rev Neurol. 2018;14:225–236

65. Wang S, Yang J, Zhang B, Zhang L, Wu K, Yang A, Li C, Wang Y, Zhang J, Qi D. Potential link between gut microbiota and deoxynivalenol-induced feed refusal in weaned piglets J Agric Food Chem. 2019;67:4976–4986

66. Xie Y, Liu Q, Zheng L, Wang B, Qu X, Ni J, Zhang Y, Du X. Se-methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in Alzheimer model mice Mol Nutr Food Res. 2018;62:e1800107

67. Yang Y, Zhu Y, Xi X. Anti-inflammatory and antitumor action of hydrogen via reactive oxygen species Oncol Lett. 2018;16:2771–2776

68. Yao K, Zu HB. Microglial polarization: novel therapeutic mechanism against Alzheimer’s disease Inflammopharmacology. 2020;28:95–110

69. Zhang L, Zhao P, Yue C, Jin Z, Liu Q, Du X, He Q. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer’s disease Biomaterials. 2019;197:393–404

70. Zhang X, Bian JS. Hydrogen sulfide: a neuromodulator and neuroprotectant in the central nervous system ACS Chem Neurosci. 2014;5:876–883

71. Zhong Y, Huang R, Li X, Xu R, Zhou F, Wang J, Fan H, Goscinski M, Zhang M, Wen JG, Nesland JM, Suo Z. Decreased expression of PDHE1α predicts worse clinical outcome in esophageal squamous cell carcinoma Anticancer Res. 2015;35:5533–5538

72. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, McGeough MD, Ellisman MH, Seki E, Gustafsson AB, Hoffman HM, Diaz-Meco MT, Moscat J, Karin M. NF-κB restricts inflammasome activation via elimination of damaged mitochondria Cell. 2016;164:896–910

73. Zhou Z, Austin GL, Young LEA, Johnson LA, Sun R. Mitochondrial metabolism in major neurological diseases Cells. 2018;7:229
Post a comment

Leave the first comment

Check your rate in seconds
without leaving our site

Check your rate in seconds
without leaving our site

*Required field

Select Your Drinking Water Source To Get Started

Get A Free
Water Quality Report

*Required field

Get A Free Water Quality Report

Get A Free
Water Quality Report

Life Ionizers will give you a FREE personalized Water Quality Report ($100 value) to identify any harmful contaminants in your local water supply. These results will be available via email with a Free follow-up consultation with one of our experts.

*Required field

By clicking the button below, you agree to our Data & Privacy Policy

Save $500 on MXL Models 9-15 / Valid Until October 6