1. Albaret G, Sifré E, Floch P, Laye S, Aubert A, Dubus P, Azzi-Martin L, Giese A, Salles N, Mégraud F, Varon C, Lehours P, Roubaud-Baudron C. Alzheimer’s disease and helicobacter pylori infection: inflammation from stomach to brain? J Alzheimers Dis. 2020;73:801–809
2. Allsop D, Wong CW, Ikeda S, Landon M, Kidd M, Glenner GG. Immunohistochemical evidence for the derivation of a peptide ligand from the amyloid beta-protein precursor of Alzheimer disease Proc Natl Acad Sci U S A. 1988;85:2790–2794
3. Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration FEBS Lett. 2018;592:692–702
4. Batista AF, Forny-Germano L, Clarke JR, Lyra ESNM, Brito-Moreira J, Boehnke SE, Winterborn A, Coe BC, Lablans A, Vital JF, Marques SA, Martinez AM, Gralle M, Holscher C, Klein WL, Houzel JC, Ferreira ST, Munoz DP, De Felice FG. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease J Pathol. 2018;245:85–100
5. Biczo G, Vegh ET, Shalbueva N, Mareninova OA, Elperin J, Lotshaw E, Gretler S, Lugea A, Malla SR, Dawson D, Ruchala P, Whitelegge J, French SW, Wen L, Husain SZ, Gorelick FS, Hegyi P, Rakonczay Z Jr, Gukovsky I, Gukovskaya AS. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models Gastroenterology. 2018;154:689–703
6. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM. Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice Neuron. 2005;45:675–688
7. Bozso Z, Penke B, Simon D, Laczkó I, Juhász G, Szegedi V, Kasza A, Soós K, Hetényi A, Wéber E, Tóháti H, Csete M, Zarándi M, Fülöp L. Controlled
in situ preparation of A beta(1-42) oligomers from the isopeptide “iso-A beta(1-42)”, physicochemical and biological characterization Peptides. 2010;31:248–256
8. Cheng D, Chang H, Ma S, Guo J, She G, Zhang F, Li L, Li X, Lu Y. Tiansi liquid modulates gut microbiota composition and tryptophan-kynurenine metabolism in rats with hydrocortisone-induced depression Molecules. 2018;23:2832
9. Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease Nat Rev Neurol. 2018;14:399–415
10. Corpas FJ, González-Gordo S, Cañas A, Palma JM. Nitric oxide and hydrogen sulfide in plants: which comes first? J Exp Bot. 2019;70:4391–4404
11. Daniels MJ, Rivers-Auty J, Schilling T, Spencer NG, Watremez W, Fasolino V, Booth SJ, White CS, Baldwin AG, Freeman S, Wong R, Latta C, Yu S, Jackson J, Fischer N, Koziel V, Pillot T, Bagnall J, Allan SM, Paszek P, et al Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models Nat Commun. 2016;7:12504
12. Deas E, Cremades N, Angelova PR, Ludtmann MH, Yao Z, Chen S, Horrocks MH, Banushi B, Little D, Devine MJ, Gissen P, Klenerman D, Dobson CM, Wood NW, Gandhi S, Abramov AY. Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease Antioxid Redox Signal. 2016;24:376–391
13. Du YH, Sun Y, Yang RY, Wang LY, Cai M. Mechanisms of neuroinflammation in mild cognitive impairment Zhongguo Zuzhi Gongcheng Yanjiu. 2021;25:4743–4749
14. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktäschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease Nat Neurosci. 2019;22:401–412
15. Filippov MA, Tatarnikova OG, Pozdnyakova NV, Vorobyov VV. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: a role of mitochondria targeted catalase and xanthophylls Neural Regen Res. 2021;16:223–233
16. Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM. Synaptic impairment in Alzheimer’s disease: a dysregulated symphony Trends Neurosci. 2017;40:347–357
17. Frere S, Slutsky I. Alzheimer’s disease: from firing instability to homeostasis network collapse Neuron. 2018;97:32–58
18. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, et al Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients Science. 2018;359:97–103
19. Gray SC, Kinghorn KJ, Woodling NS. Shifting equilibriums in Alzheimer’s disease: the complex roles of microglia in neuroinflammation, neuronal survival and neurogenesis Neural Regen Res. 2020;15:1208–1219
20. Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease Acta Neuropathol. 2017;133:665–704
21. Hammer C, Stepniak B, Schneider A, Papiol S, Tantra M, Begemann M, Sirén AL, Pardo LA, Sperling S, Mohd Jofrry S, Gurvich A, Jensen N, Ostmeier K, Lühder F, Probst C, Martens H, Gillis M, Saher G, Assogna F, Spalletta G, et al Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity Mol Psychiatry. 2014;19:1143–1149
22. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, et al Neuroinflammation in Alzheimer’s disease Lancet Neurol. 2015;14:388–405
23. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B. Complement and microglia mediate early synapse loss in Alzheimer mouse models Science. 2016;352:712–716
24. Iida A, Nosaka N, Yumoto T, Knaup E, Naito H, Nishiyama C, Yamakawa Y, Tsukahara K, Terado M, Sato K, Ugawa T, Nakao A. The Clinical application of hydrogen as a medical treatment Acta Med Okayama. 2016;70:331–337
25. Iketani M, Ohsawa I. Molecular hydrogen as a neuroprotective agent Curr Neuropharmacol. 2017;15:324–331
26. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease Alzheimers Dement. 2018;14:535–562
27. Jha MK, Lee WH, Suk K. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders Biochem Pharmacol. 2016;103:1–16
28. Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T. Microglia: housekeeper of the central nervous system Cell Mol Neurobiol. 2018;38:53–71
29. Kempuraj D, Ahmed ME, Selvakumar GP, Thangavel R, Dhaliwal AS, Dubova I, Mentor S, Premkumar K, Saeed D, Zahoor H, Raikwar SP, Zaheer S, Iyer SS, Zaheer A. Brain injury-mediated neuroinflammatory response and Alzheimer’s disease Neuroscientist. 2020;26:134–155
30. Kocha KM, Reilly K, Porplycia DS, McDonald J, Snider T, Moyes CD. Evolution of the oxygen sensitivity of cytochrome c oxidase subunit 4 Am J Physiol Regul Integr Comp Physiol. 2015;308:R305–320
31. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10 Proc Natl Acad Sci U S A. 2001;98:5815–5820
32. Kumar A, Barrett JP, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury Brain Behav Immun. 2016;58:291–309
33. Kumar M, Sandhir R. Hydrogen sulfide in physiological and pathological mechanisms in brain CNS Neurol Disord Drug Targets. 2018;17:654–670
34. Kura B, Bagchi AK, Singal PK, Barancik M, LeBaron TW, Valachova K, Šoltés L, Slezák J. Molecular hydrogen: potential in mitigating oxidative-stress-induced radiation injury (1) Can J Physiol Pharmacol. 2019;97:287–292
35. Li R, Xin T, Li D, Wang C, Zhu H, Zhou H. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy Redox Biol. 2018;18:229–243
36. Lowe VJ, Wiste HJ, Senjem ML, Weigand SD, Therneau TM, Boeve BF, Josephs KA, Fang P, Pandey MK, Murray ME, Kantarci K, Jones DT, Vemuri P, Graff-Radford J, Schwarz CG, Machulda MM, Mielke MM, Roberts RO, Knopman DS, Petersen RC, et al Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia Brain. 2018;141:271–287
37. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities Appl Environ Microbiol. 2005;71:8228–8235
38. MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, Louie G, Kueider-Paisley A, Moseley MA, Thompson JW, St John Williams L, Tenenbaum JD, Blach C, Baillie R, Han X, Bhattacharyya S, Toledo JB, Schafferer S, Klein S, Koal T, et al Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for gut microbiome Alzheimers Dement. 2019;15:76–92
39. Manuel CR, Latuga MS, Ashby CR Jr, Reznik SE. Immune tolerance attenuates gut dysbiosis, dysregulated uterine gene expression and high-fat diet potentiated preterm birth in mice Am J Obstet Gynecol. 2019:596.e1–596.e28
40. Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease Free Radic Biol Med. 1997;23:134–147
41. Mostafavi S, Gaiteri C, Sullivan SE, White CC, Tasaki S, Xu J, Taga M, Klein HU, Patrick E, Komashko V, McCabe C, Smith R, Bradshaw EM, Root DE, Regev A, Yu L, Chibnik LB, Schneider JA, Young-Pearse TL, Bennett DA, et al A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease Nat Neurosci. 2018;21:811–819
42. Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy Cardiovasc Res. 2017;113:389–398
43. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease Neurobiol Aging. 2003;24:1063–1070
44. Ohno K, Ito M, Ichihara M, Ito M. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases Oxid Med Cell Longev. 2012;2012:353152
45. Ohta S. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications Methods Enzymol. 2015;555:289–317
46. Olas B. Hydrogen sulfide as a “double-faced” compound: one with pro- and antioxidant effect Adv Clin Chem. 2017;78:187–196
47. Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease Clin Biochem. 2019;72:87–89
48. Park J, Wetzel I, Marriott I, Dréau D, D’Avanzo C, Kim DY, Tanzi RE, Cho H. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease Nat Neurosci. 2018;21:941–951
49. Paxinos G, Franklin KB The Mouse Brain in Stereotaxic Coordinates. 2013 San Diego Elsevier
50. Rai S, Kamat PK, Nath C, Shukla R. Glial activation and post-synaptic neurotoxicity: the key events in streptozotocin (ICV) induced memory impairment in rats Pharmacol Biochem Behav. 2014;117:104–117
51. Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, Creemers E, Vertkin I, Nys J, Ranaivoson FM, Comoletti D, Savas JN, Remaut H, Balschun D, Wierda KD, Slutsky I, Farrow K, De Strooper B, de Wit J. Secreted amyloid-β precursor protein functions as a GABA(B)R1a ligand to modulate synaptic transmission Science. 2019;363:eaao4827
52. Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, Palop JJ, Noebels JL, Mucke L. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease J Neurosci. 2011;31:700–711
53. Sehajpal S, Prasad DN, Singh RK. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): a long march towards synthesis of safer NSAIDs Mini Rev Med Chem. 2018;18:1199–1219
54. Selkoe DJ, Schenk D. Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics Annu Rev Pharmacol Toxicol. 2003;43:545–584
55. Sheng ZH, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration Nat Rev Neurosci. 2012;13:77–93
56. Shoji H, Takao K, Hattori S, Miyakawa T. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age Mol Brain. 2016;9:11
57. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid Anal Biochem. 1985;150:76–85
58. Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases Acta Neuropathol. 2017;134:187–205
59. Su CH, McStay GP, Tzagoloff A. Assembly of the rotor component of yeast mitochondrial ATP synthase is enhanced when Atp9p is supplied by Atp9p-Cox6p complexes J Biol Chem. 2014;289:31605–31616
60. Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus Nat Rev Gastroenterol Hepatol. 2017;14:32–42
61. Tran TTT, Corsini S, Kellingray L, Hegarty C, Le Gall G, Narbad A, Müller M, Tejera N, O’Toole PW, Minihane AM, Vauzour D. APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer’s disease pathophysiology FASEB J. 2019;33:8221–8231
62. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, Van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J. The neuroactive potential of the human gut microbiota in quality of life and depression Nature microbiology. 2019;4:623–632
63. Vilalta A, Brown GC. Neurophagy, the phagocytosis of live neurons and synapses by glia, contributes to brain development and disease FEBS J. 2018;285:3566–3575
64. Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions Nat Rev Neurol. 2018;14:225–236
65. Wang S, Yang J, Zhang B, Zhang L, Wu K, Yang A, Li C, Wang Y, Zhang J, Qi D. Potential link between gut microbiota and deoxynivalenol-induced feed refusal in weaned piglets J Agric Food Chem. 2019;67:4976–4986
66. Xie Y, Liu Q, Zheng L, Wang B, Qu X, Ni J, Zhang Y, Du X. Se-methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in Alzheimer model mice Mol Nutr Food Res. 2018;62:e1800107
67. Yang Y, Zhu Y, Xi X. Anti-inflammatory and antitumor action of hydrogen via reactive oxygen species Oncol Lett. 2018;16:2771–2776
68. Yao K, Zu HB. Microglial polarization: novel therapeutic mechanism against Alzheimer’s disease Inflammopharmacology. 2020;28:95–110
69. Zhang L, Zhao P, Yue C, Jin Z, Liu Q, Du X, He Q. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer’s disease Biomaterials. 2019;197:393–404
70. Zhang X, Bian JS. Hydrogen sulfide: a neuromodulator and neuroprotectant in the central nervous system ACS Chem Neurosci. 2014;5:876–883
71. Zhong Y, Huang R, Li X, Xu R, Zhou F, Wang J, Fan H, Goscinski M, Zhang M, Wen JG, Nesland JM, Suo Z. Decreased expression of PDHE1α predicts worse clinical outcome in esophageal squamous cell carcinoma Anticancer Res. 2015;35:5533–5538
72. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, McGeough MD, Ellisman MH, Seki E, Gustafsson AB, Hoffman HM, Diaz-Meco MT, Moscat J, Karin M. NF-κB restricts inflammasome activation via elimination of damaged mitochondria Cell. 2016;164:896–910
73. Zhou Z, Austin GL, Young LEA, Johnson LA, Sun R. Mitochondrial metabolism in major neurological diseases Cells. 2018;7:229